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Abstract. This paper continues our systematic study of an RNA-editing
computational model of Genetic Algorithms (GA). This model is con-
structed based on several genetic editing characteristics that are gleaned
from the RNA editing system as observed in several organisms. We have
expanded the traditional Genetic Algorithm with artificial editing mech-
anisms as proposed in [11] and [12]. The incorporation of editing mech-
anisms, which stochastically alter the information encoded in the geno-
type, provides a means for artificial agents with genetic descriptions to
gain greater phenotypic plasticity, which may be environmentally regu-
lated. The systematic study of this artificial genotype editing model has
shed some light into the evolutionary implications of RNA editing and
how to select proper genotype editors to design more robust GAs. Our
results also show promising applications to complex real-world problems.
We expect that the framework here developed will both facilitate deter-
mining the evolutionary role of RNA editing in biology, and advance the
current state of research in Evolutionary Computation.

1 Introduction

Evidence for the important role of non-protein coding RNA (ncRNA) in com-
plex organisms (higher eukaryotes) has accumulated in recent years. “ncRNA
dominates the genomic output of the higher organisms and has been shown to
control chromosome architecture, mRNA turnover and the developmental tim-
ing of protein expression, and may also regulate transcription and alternative
splicing.” ([9], p 930).

RNA Editing ([2]; [1]), a process of post-transcriptional alteration of genetic
information, can be performed by ncRNA structures (though it can also be per-
formed by proteins). The term initially referred to the insertion or deletion of
particular bases (e.g. uridine), or some sort of base conversion. Basically, RNA
Editing instantiates a non-inheritable stochastic alteration of genes, which is
typically developmentally and/or environmentally regulated to produce appro-
priate phenotypical responses to different stages of development or states of the
environment.

The most famous RNA editing system is that of the African Trypanosomes
[2]. Its genetic material was found to possess strange sequence features such



as genes without translational initiation and termination codons, frame shifted
genes, etc. Furthermore, observation of mRNA’s showed that many of them were
significantly different from the genetic material from which they had been tran-
scribed. These facts suggested that mRNA’s were edited post-transcriptionally.
It was later recognized that this editing was performed by guide RNA’s (gRNA’s)
coded mostly by what was previously thought of as non-functional genetic ma-
terial [13]. In this particular genetic system, gRNA’s operate by inserting, and
sometimes deleting, uridines. To appreciate the effect of this edition let us con-
sider Fig. 1. The first example (p. 14 in [2]) shows a massive uridine insertion
(lowercase u’s); the amino acid sequence that would be obtained prior to any
edition is shown on top of the base sequence, and the amino acid sequence ob-
tained after edition is shown in the gray box. The second example shows how,
potentially, the insertion of a single uridine can change dramatically the amino
acid sequence obtained; in this case, a termination codon is introduced. It is im-
portant to retain that a mRNA molecule can be more or less edited according to
the concentrations of the editing operators it encounters. Thus, several different
proteins coded by the same gene may coexist in an organism or even a cell, if all
(or some) of the mRNA’s obtained from the same gene, but edited differently,
are meaningful to the translation mechanism.

Fig. 1. U-insertion in Trypanosomes’ RNA

The role of RNA editing in the development of more complex organisms has
also been shown to be important. Lomeli et al. [8] discovered that the extent of
RNA editing affecting a type of receptor channels responsible for the mediation
of excitatory postsynaptic currents in the central nervous system, increases in
rat brain development. As a consequence, the kinetic aspects of these channels
differ according to the time of their creation in the brain’s developmental pro-
cess. Another example is that the development of rats without a gene (ADAR1)
known to be involved in RNA editing, terminates midterm [14]. This showed
that RNA Editing is more prevalent and important than previously thought.
More recently, Hoopengardner et al. [5] found that RNA editing plays a central
role in nervous system function. Indeed, many edited sites recode conserved and
functionally important amino acids, some of which may play a role in nervous
system disorders such as epilepsy and Parkinson Disease.

Although RNA editing seems to play an essential role in the development of
some genetic systems and more and more editing mechanisms have been iden-



tified, not much has been advanced to understand the potential evolutionary
advantages, if any, that RNA editing processes may have provided. To acquire
insights for answering this question, we started the systematic study of a Genetic
Algorithm with Edition (GAE) initially proposed by Rocha [11], [12]. Specifi-
cally, we reported in [7] some preliminary results on how Genotype Editing may
provide evolutionary advantages. Here, we continue this study by presenting re-
sults based on simulations with much larger numbers of runs with randomized
parameters, yielding a more statistically significant treatment of the conclusions
reached in [7] from individual examples of genotype editing. Our goal is to gain
a deeper understanding of the nature of RNA editing and exploit its insights
to improve evolutionary computation tools and their applications to complex
problems. Before delving fully into this paper, the next section summarizes our
prior work in Genetic Algorithms with Genotype Edition in [7].

2 Prior Work on Genetic Algorithms with Edition

In science and technology Genetic Algorithms (GA) [4] have been used as com-
putational models of natural evolutionary systems and as adaptive algorithms
for solving optimization problems. Table 1 depicts the process of a simple genetic
algorithm.

Table 1. Mechanism of a simple GA.

1. Randomly generate an initial population of l n-bit chromosomes.
2. Evaluate each individual’s fitness.
3. Repeat until l offspring have been created.

a. select a pair of parents for mating;
b. apply crossover operator;
c. apply mutation operator.

4. Replace the current population with the new population.
5. Go to Step 2 until terminating condition.

GAs operate on an evolving population of artificial organisms, or agents.
Each agent is comprised of a genotype and a phenotype. Evolution occurs by it-
erated stochastic variation of genotypes, and selection of the best phenotypes in
an environment according to a fitness function. In machine learning, the pheno-
type is a candidate solution to some optimization problem, while the genotype is
an encoding, or description, of that solution by means of a domain independent
representation, namely, binary symbol strings (or chromosomes). In traditional
GAs, this code between genotype and phenotype is a direct and unique mapping.
In biological genetic systems, however, there exists a multitude of processes, tak-
ing place between the transcription of genes and their expression, responsible for
the establishment of a one-to-many relation between genotype and phenotype.
For instance, it was shown that RNA editing has the power to dramatically alter
gene expression [10] (p. 78): “cells with different mixes of (editing mechanisms)
may edit a transcript from the same gene differently, thereby making different
proteins from the same opened gene.”



In a genetic system with RNA editing, in other words, before a gene is trans-
lated into the space of proteins it may be altered through interactions with other
types of molecules, namely RNA editors such as gRNA’s. Based upon this anal-
ogy, Rocha [11], [12] proposed an expanded framework of GA with a process of
stochastic edition of the genetic descriptions (chromosomes) of agents, prior to
being translated into solutions. The editing process is implemented by a set of
editors with different editing functions, such as insertion or deletion of symbols
in the original chromosomes. Before these descriptions can be translated into the
space of solutions, they must “pass” through successive layers of editors, present
in different concentrations. In each generation, each chromosome has a certain
probability (given by the concentrations) of encountering an editor in its layer.
If an editor matches some subsequence of the chromosome when they encounter
each other, the editor’s function is applied and the chromosome is altered. The
implementation of a GA with Edition (GAE) is described in the following:

The GAE model consists of a family of r m-bit strings, denoted as (E1, E2, . . . ,
Er), that is used as the set of editors for the chromosomes of the agents in a
GA population. The length of the editor strings is assumed much smaller than
that of the chromosomes: m << n, usually an order of magnitude. An editor
Ej is said to match a substring, of size m, of a chromosome, S, at position k if
ei = sk+i, i = 1, 2, . . . ,m, 1 ≤ k ≤ n−m, where ei and si denote the ith bit value
of Ej and S, respectively. For each editor, Ej , there exists an associated editing
function, Fj , that specifies how a particular editor edits the chromosomes: when
the editor matches a portion of a chromosome, a number of bits are inserted into
or deleted from the chromosome.

For instance, if the editing function of editor Ej is to add one randomly
generated allele at sk+m+1 when Ej matches S at position k, then all alleles of
S from position k + m + 1 to n − 1 are shifted one position to the right (the
allele at position n is removed). Analogously, if the editing function of editor Ej

is to delete an allele, this editor will instead delete the allele at sk+m+1 when Ej

matches S at position k. All the alleles after position k + m + 1 are shifted in
the inverse direction (one randomly generated allele is assigned at position n).

Finally, let the concentrations of the editor family be defined by (v1, v2, . . . , vr);
i.e., the concentration of editor Ej is denoted as vj . Then the probability that S
encounters Ej is given by vj . With these settings, the algorithm for the GA with
genotype editing is essentially the same as the regular GA, except that step 2 in
Table 1 is now redefined as:

“For each individual in the GA population, apply each editor Ej with proba-
bility vj (i.e., concentration). If Ej matches the individual’s chromosome S, then
edit S with the editing function associated with Ej and evaluate the resulting
individual’s fitness.”

It is important to notice that the “post-transcriptional” edition of genotypes
is not a process akin to mutation, because editions are not inheritable. Just
like in biological systems, it is the unedited genotype that is reproduced. One
can also note that Genotype Editing is not a process akin to the Baldwin ef-
fect as studied by, e.g., Hinton and Nowlan [3]. The phenotypes of our agents



with genotype edition, do not change (or learn) ontogenetically. In Hinton and
Nowlan’s experiments, the environment is defined by a very difficult (“needle in
a haystack”) fitness function, which can be made more amenable to evolution-
ary search by endowing the phenotypes to “learn” ontogenetically. Eventually,
they observed, this learning allows genetic variation to discover, and genetically
encode fit individuals. In contrast, genotype edition does not grant agents more
“ontogenetic learning time”, it simply changes inherited genetic information on-
togenetically but the phenotype, once produced, is fixed. Also, as we show below,
it is advantageous in environments very amenable to evolution, such as Royal
Road functions (the opposite of “needle in a haystack”) [7].

In [7], based on specific examples, we have demonstrated how the editing
mechanism can improve the GA’s search performance by suppressing the effects
of hitchhiking. We have also showed that editing frequency plays a critical role
in the evolutionary advantage provided by the editors – only a moderate degree
of editing processes would facilitate organisms’ exploration of the search space.
Therefore, one needs to choose proper editor parameters to avoid over or under-
editions in order to develop more robust GAs. In this paper, we conduct a larger
statistical exploration using numerous sets of families of editors to elaborate on
the conditions where genotype editing truly enhances the GA’s search power.

3 Effects of Genotype Editing

How rapid is evolutionary change, and what determines the rates, patterns,
and causes of change, or lack thereof? Answers to these questions can tell us
much about the evolutionary process. The study of evolutionary rate in the
context of GA usually involves defining a performance measure that captures
the idea of rate of improvement, so that its change over time can be monitored
for investigation. In many practical problems, a traditional performance metric
is the “best-so-far” curve that plots the fitness of the best individual that has
been seen thus far by generation n. As a step towards a deeper understanding
of how Genotype Editing works, we employ a testbed, the small Royal Road S1,
which is a miniature of the class of the “Royal Road” functions [7].

Table 2. Small royal road function S1

s1 = 11111***********************************; c1 = 10
s2 = *****11111******************************; c2 = 10
s3 = **********11111*************************; c3 = 10
s4 = ***************11111********************; c4 = 10
s5 = ********************11111***************; c5 = 10
s6 = *************************11111**********; c6 = 10
s7 = ******************************11111*****; c7 = 10
s8 = ***********************************11111; c8 = 10

Table 2 illustrates the schematic of the small Royal Road function S1. This
function involves a set of schemata S = {s1, . . . , s8} and the fitness of a bit
string (chromosome) x is defined as F (x) =

∑
s∈S csσs(x), where each cs is a

value assigned to the schema s as defined in the table; σs(x) is defined as 1 if



x is an instance of s and 0 otherwise. In this function, the fitness of the global
optimum string (40 1’s) is 10 × 8 = 80.

There are several factors that play a role in the GAE’s search power – e.g., size
of the family of editors, editor length, editor concentration and editor function
[7]. Our aim here is to investigate these four parameters. Since a multitude
of parameter combinations are possible, we conduct numerous GAE runs and
focus on a single parameter while other parameters are randomly generated in
the beginning of each GAE run and then fixed until the end of that run. The
results are then averaged over the number of the GAE runs so that we may zero
in on the effects of that parameter.

3.1 Effects of Size of the Family of Editors

To study the effect of the size of editor family parameter r, two sets of values, r
∈ 1,2,3,4,5 and r ∈ {6,7,8,9,10}, are tested. The GAE was run 100 times for each
set and in each GAE run the value of r is randomly chosen from the respective
sets.1 Figure 2.a and 2.b display the results on averaged best-so-far performance
and averaged editing frequency (the total number of times all editors edited
chromosomes in a generation) over 100 runs, respectively.2 One can see that the
GAEs with less editors (i.e., 1 to 5) clearly outperform the GAEs with more
editors (i.e., 6 to 10).3 The results also show that the editing frequency for the
GAEs with less editors is substantially smaller than that of the GAEs with more
editors. These results are intuitive, since more editors naturally tend to incur
more editing processes.

To further elucidate the effects of this parameter, Figure 2.c displays the
results of editing frequency in individual runs for r: 2, 5 and 10 editors. The
corresponding maximal fitness reached by the GAE with 2, 5, and 10 editors is
70, 80 and 50, respectively (the detailed results are not displayed here due to the
limit of the paper length). One can notice that in the run of the GAE with 10
editors, where the maximal fitness attained is far from the optimum, the editing
frequency does not significantly drop to zero near the end of the experiments.
It appears that the GAE’s population continues utilizing the editors to explore

1 The settings of other editor parameters are: each editor is a randomized bit-string of
a randomly chosen number of bits from {1,10}; the editor concentration is randomly
generated from [0,1]; and the editor function inserts or deletes a randomly chosen
number of bits from {1,10}, as well. For the GA part, throughout this section, we
use a population of 40 chromosomes, a binary tournament selection, and crossover
and mutation rates of 0.7 and 0.005, respectively.

2 The value of the averaged best-so-far performance is calculated by averaging the
best-so-fars obtained at each generation for all 100 runs; and so is the averaged
editing frequency, where the vertical bars overlaying the metric curves represent the
95-percent confidence intervals. This applies to all the results presented in this paper.

3 We do not contrast the performance of traditional GAs with that of the GAE here,
since the purpose in this section is to study the effects of the editor parameters per
se. Please see [7] for specific examples of the GAE outperforming GA, as well as
guidelines for choosing proper editors so that the GAEs can outperform the GAs.



the search space. This is the reason why the corresponding population diversity
displayed in Figure 2.d is far from zero in the case of the GAE with 10 editors.4

For the GAE with 2 editors, the best-so-far fitness located is close to the optimum
– the results in Figure 2.c and 2.d show that the degree of editing is then reduced
and the population is not as diverse as that of the GAE with 10 editors. All
this indicates that the system settles into a dynamic equilibrium in which the
exploratory power of the editing process is balanced by the exploitative pressure
of selection.

In the case of the GAE with 5 editors, whose best-so-far fitness reaches the
optimum, the striking difference is that the corresponding editing frequency de-
clines dramatically as the GAE’s population evolves, and tends to drop to zero at
the end of the experiments. This shows that the editing process ultimately comes
to an end and the population diversity is lost (as shown in Figure 2.d). Based
on the effects of editor length and concentration, in the next two subsections we
will present more results to support this observation.
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Fig. 2. Effects of size of the family of editors

3.2 Effects of Editor Length

To test the effect of the editor length parameter m, two sets of values, m ∈
{1,2} and m ∈ {3,4,5}, are investigated. The GAE was run 100 times for each
set and in each GAE run the value of m is randomly chosen from respective
sets.5 Figure 3.a illustrates the results for these two sets of GAEs, in which
4 To measure diversity at the ith locus of a GA string, a simple bitwise diversity metric

is defined as [7]: Di = 1 − 2|0.5 − pi|, where pi is the proportion of 1s at locus i in
the current generation. Averaging the bitwise diversity metric over all loci offers a

combined allelic diversity measure for the population: D =

∑l

i=1
Di

l
. D has a value

of 1 when the proportion of 1s at each locus is 0.5 and 0 when all of the loci are
fixed to either 0 or 1. Effectively it measures how close the allele frequency is to a
random population (1 being closest).

5 The size of the editor family in this subsection is randomly chosen from {1,10}. The
other two parameters (concentration and function) of an editor are generated by the
same way as in the preceding subsection.



the GAEs with longer editor length (3 to 5 bits) outperform the other. This is
also an intuitive result, since when the length of editors is too short, numerous
matchings occur and the GAEs’ population undergos too many editing processes.
This typically results in serious disruptive effect on fit individuals.

In other words, the performance discrepancy of the GAEs with different edi-
tor length again depends on editing frequency. The empirical results for editing
frequency shown in Figure 3.b confirm our assertion. The editing frequency for
the GAEs with 1 to 2-bit editors is much higher than that of the GAEs with 3
to 5-bit editors. Therefore, beneficial genotype editing requires moderate editing
frequency.
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Fig. 3. Effects of editor length

3.3 Effects of Editor Concentration

To test the effect of the editor concentration parameter vj , we again ran the
GAE 100 times for two different sets of values of this parameter for each editor
Ej : vj ∈ [0,0.5] and vj ∈ in [0.5,1].6 Thus, the probability that chromosomes en-
counter editors in the second set of GAEs is higher than in the first set of GAEs.
Figure 4.a and 4.b display the results. Since the probability of the chromosomes
meeting with editors is higher in the second set of GAEs, the population natu-
rally undergos more editions than in the first set of GAEs.

These results again indicate that the performance difference lies in the num-
ber of the performed editions. When the GAE’s population is considerably edited
by the editors, too much exploration of the search space generates deleterious
effects on performance advancement. Appropriate editor concentration is thus
essential for the GAE, since beneficial genotype edition requires a moderate
quantity of editions.

3.4 Effects of Editor Function

To test the effect of the editor functions Fj , we again ran the GAE 100 times for
two different sets of functions for each editor Ej . The scope of possible functions

6 The size of the editor family in this subsection is randomly chosen from {1,10}. The
other two parameters (length and function) of an editor are generated by the same
way as in Section 3.1.
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Fig. 4. Effects of editor concentration

is open-ended, but here we contrast moderate edition with massive edition. The
first set of functions Fj insert or delete a randomly chosen small number of bits
in {1,2,3}. The second set of functions Fj insert or delete a randomly chosen
larger number of bits in {10,11,12,13,14,15}.7 Figure 5.a and 5.b display the
corresponding results. Since the gene deletion or insertion frequency in chromo-
somes is now much higher in the second set of GAEs, the population naturally
undergos more disruptive processes than in the first set of GAEs.

These results demonstrate that the performance difference lies in the degree
of gene deletion (or insertion) in chromosomes. Appropriate editor function is
thus also very important for the GAE to gain substantial search progress.
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4 Design of Robust GA

The study of Genotype Editing has provided us with insights into how to choose
editor parameters for developing more robust GAs. Basically, in order to facili-
tate the GAE’s search process, the guidelines are: the size of the editor family,
the length and concentration of the editors need to be moderate so as to avoid

7 The size of the editor family in this subsection is randomly chosen from {1,5}; an
editor’s concentration is randomly generated from [0,1] and its length is a randomly
chosen number of bits from {1,10}.



over or under-editing processes; the editor function should not lead to massive
deletions (or insertions).

In this section we apply these rules to select proper genotype editors for
the design of more robust GAEs, and test them on a multimodal, non-building-
block-based test function – the modified Schaffer’s function F7 [6]:

f(x) = 2.5− (x2
1 + x2

2)
0.25[sin2(50(x2

1 + x2
2)

0.1) + 1],

where −1 ≤ xi ≤ 1 for 1 ≤ i ≤ 2. A sketch of this function is displayed in
Figure 6. To attain the global optimum at the center of the search space, the
population has to cross over many deep wells and high barriers. Since there are
many local optima in the search space, a traditional GA’s population can easily
converge on any of them. The multimodality of this testbed is hence expected
to present substantial difficulty to the GA’s search.

Each of the two variables is encoded by 30 bits, and thus each individual is a
binary string of length 60. We use a GA of population size 50, a binary tourna-
ment selection, and crossover and mutation rates of 0.7 and 0.005, respectively.
We contrast the traditional GA with a GAE with the same parameters, but with
genotype edition performed by a family of five editors as shown in Table 3. The
experiments are conducted for 100 runs, each run with 200 generations.

Table 3. Parameters of the five editors

editor 1 editor 2 editor 3 editor 4 editor 5

length 5 4 5 3 6

alleles {0,0,1,1,0} {1,0,0,1} {0,1,1,0,1} {0,1,1} {1,1,1,1,0,0}
concentration 0.1410 0.7936 0.2524 0.5885 0.0871

function delete 2 bits delete 1 bit add 3 bits add 2 bits add 5 bits
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Fig. 6. Modified Schaffer function F7

Figure 7.a displays the averaged best-so-far performance, where one can see
that the search performance of the GAE is better than that of the traditional
GA. We also record the value of best-so-far attained at the end of each run and
generate histograms as illustrated in Figure 7.b (for the GA) and 7.c (for the
GAE). The results show that the GAE tends to locate more best-so-fars that are
close to the optimum. One can also notice that there are several runs in which
the traditional GA does not even locate best-so-fars of more than 2.3, meaning
that the population in these runs prematurely converge on these “lower” local
optima.
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5 Conclusion and Future Work

We have continued our systematic investigation of Genotype Editing in GA and
tested several evolutionary scenarios. The results obtained have provided the
following insights:

Editing frequency plays a critical role in the evolutionary advantage provided
by the editors – only a moderate degree of editing processes can facilitate or-
ganisms’ exploration of the search space. Our results also indicate that editing
frequency declines dramatically as the population diversity is lost, indicating
that the editing process ultimately comes to an end. If the editing frequency
does not substantially decrease, the system settles into a dynamic equilibrium
where the exploratory power of the editing process is balanced by the exploitative
pressure of selection.

We have also learned some rules for setting up editors’ parameters to de-
velop robust GAs. The results obtained show promising applications to practical
problems. Indeed, Genotype Editing demonstrates the capability of substantially
improving the GA’s search power.

In this paper we have thus far discussed GAs with edition solely with con-
stant parameters, such as fixed concentrations, of editors and a stable environ-
ment defined by a fixed fitness function. That is, the edition parameters are
fixed at the start of a given run. They do not change or adapt in the evolution-
ary process. Our preliminary tests (not discussed here), however, also show that
constant concentrations of editors may not grant the system any evolutionary
advantage when the environment changes. In order to simulate a genetic system
in which the linking of editors’ concentrations with environmental states may
be advantageous in time-varying environments, Rocha [11], [12] proposed a new
type of GA known as Contextual Genetic Algorithms (CGA). In this class of
algorithms, the concentrations of editors change with the states of the environ-
ment, thus introducing a control mechanism leading to phenotypic plasticity and



greater evolvability. We are currently working on this model and, together with
the insights acquired previously, in future work we aim at (1) conducting more
biologically realistic experiments which may lead us towards a better under-
standing of the advantages of RNA editing in nature, and (2) developing novel
evolutionary computation tools for dealing with complex, dynamic real-world
problems.
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